IoT with Ruby/mruby

RubyWorld Conference 2015

2015/11/12

Computer Engineering and Consulting ltd.
Tetsuya Hirota
Introduction

In the Japan OSS Promotion Forum, studied IoT with Ruby/mruby from last year, and developed the sample. This time, will present last year's result, technical challenges, and this year's activities.

- About Me
- OSS Promotion Forum
- IoT
- Overview (Last years sample)
- Technical Issues
- Countermeasures
 - Coexistence of mruby and C
 - Performance of HTTP polling communication system
- What we will do in next year
- Questions and Answers
About Me – Ruby, Matsue and Me

I have come to Matsue, first in 2011, and this time is fifth. Matsue is the beautiful city of water. And I interested in the castle, Matsue Castle is great. And …
About Me - Makinohara

I'm from Makinohara of Shizuoka pref. Makinohara has the largest tea plantations in Japan. My home is surrounded by tea field and nature.
About Me - My company

Introducing my company only a little.

I am working in the CEC as an IT infrastructure engineer.

CEC (http://www.cec-ltd.co.jp/)

CEC is a systems integrator in Japan.

Line of businesses:

- Industry automation (e.g. Factory simulating/monitoring software)
- System Integration (e.g. Contracted software development)
- Platform Integration (e.g. Datacenter, Cloud service)

I was in until last year a developing Web systems department.

Now, I am in a department of factory automation called Smart Factory unit.
Concept of The Smart Factory

Building Factory Information Infrastructure, and making efficient planning and production activities.

- Building Factory Information Infrastructure. (IoT)
- The most suitable product line design support. (Simulator)
- Support of production activities. (MES) (Future)
- Traceability, Big Data analysis, etc. (Future)

![Diagram of Smart Factory Infrastructure]

ECM (for equipment)
- 设備設計 (Equipment Design)
- 開発・設置 (Development and Installation)
- 確佳監視 (Monitoring)
- 保全 (Maintenance)
- RaAP Virfit/RoboDia
- SequenceEye Facteye

SCM (for product)
- 生産計画 (Production Planning)
- 進度・予測 (Progress and Prediction)
- 品質 (Quality Management)
- 出来高 (Output and Quality)
- Production schedule management
- Quality management
- MES

Preventive maintenance → Deep Learning

Factory Information Infrastructure
- Facteye - Equipment
- RaFLOW - Person

Big Data IoT

Multi vendor and equipments
OSS Promotion Forum

OSS Promotion Forum is the organization which consists of the users, vendors, scholars and experts of information systems.

The mission of Japan OSS Promotion Forum is

➢ to prevent problems of vendor lock-in, and increase choices by OSS
➢ promotion of technology innovation with OSS
➢ human resource development for OSS

I participate some studies at Application sub committee and focus on IoT with Ruby/mruby.
OSS Promotion Forum IoT teams member

エルエスアイ開発研究所

HTKエンジニアリング

日本OSS Promotion Forum

日立ソリューションズ
The Internet of Things (IoT)

the network of physical objects or "things" embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data.

(Wikipedia (Oct. 15, 2015, 04:08 UTC)

Application

➢ Environmental monitoring
➢ Infrastructure management
➢ Energy management
etc.
Press Release: Gartner's 2015 Hype Cycle for Emerging Technologies Identifies the Computing Innovations That Organizations Should Monitor
http://www.gartner.com/newsroom/id/3114217
Overview (Last years sample)

PC or Smart Phone
In a study room...
Checking living rooms temperature
Control the air conditioner in there

Cloud
Monitoring sensors data
Pushing alert to users
Pushing remote control request

The Internet

Smart Phone
Away from home...
Noticed temperature anomaly
Control the air conditioner in
the home from out

Sensor device
Gateway
Getting thermo sensor data
Taking up remote controlling
Hardware configuration (Last years sample)

Micro Controller: Cypress FM3 family MB9BF618T
Thermo sensor: Analog devices ADT7410
PAN device: Digi XBee ZB/XB24-27WIT-004

CPU: 3GHz 1core
RAM: 1GB
HDD: 10GB

Model: Raspberry Pi Type B 512MB
Boot device: SD card (16GB)
LAN device: BUFFALO WLI-UC-GNM
PAN device: Digi XBee XK-Z11-M-W

iPhone 5c
RAM: 1GB, Flash: 10GB
Internet connection: WiFi
Packages Layout (Last years sample)

- **Gateway**
 - MySQL
 - Ruby 2.1.3
 - Daemon (in development)
 - Web application
 - Sinatra
 - Unicorn
 - To XBee
 - To WiFi

- **Cloud**
 - MySQL
 - CentOS 7.0
 - Web application
 - active record
 - Sinatra
 - Unicorn
 - Nginx 1.6
 - To Gateway / Mobile

- **Sensor**
 - Application
 - Application (Byte code)
 - mruby 1.0.0
 - Serial library
 - I2C library
 - IO library
 - To XBee
 - To Thermo sensor
 - To On/Off control

- **Mobile**
 - iPhone
 - Application
 - Objective-C Runtime
 - Foundation Framework
 - IOS (iOS SDK)
Technical Issues - Sensor

➢ What should be made with mruby and what should be made with C. (C library also uses memory area.)

➢ Isn't it possible to operate on more low-price micro controller. (e.g. Cortex-M0 based board)

➢ The difference in implementation by type of the micro controller
Technical Issues – Cloud

➢ Not supported more than one gateway access yet. :p
➢ Not measured cloud performance for bulk access.
➢ Using polling communication system over HTTP between cloud and gateway, cloud and mobile. (That load seems high.)
➢ Security measures is needed.
Countermeasures - Sensor

➢ What should be made with mruby and what should be made with C. (C library also uses memory area.)

⇛ We made some small mrbgems.
➢ 3 mrbgems for fm3
➢ Develop with C and operate register directly

⇛ We wrote main loop in C

These source code are shared on Github
https://github.com/ossforumjp-app-IoT
Why create small mrbgems

PC has more than 4000 times RAM of micro controller. Also Elephant weight is 4000 times of Kitten.

I want to arrange just little some dishes.

Like as micro controller with mruby and mrbgems.

I will have all in one bento.

Like as PC with OS.

Elephant: http://free-illustrations.gatag.net/2013/11/16/050000.html
Cat: http://blogs.yahoo.co.jp/studio_robin2008/2060732.html
Makunouchi Bento: http://clipart-food.com/26packed-lunch/01-packed-lunch-dl.html
Bento box and side dishes:
Why main loop was written in C (1)

We made the main loop with C.

That is why the problem may be occurred if it makes with mruby.

For example:

```
main.rb (excerpt):

i = 0
loop do
  sensor = gpio.get_data if i % 100 == 0
  recvdata = serial.get_data
  if recvdata
    (0 .. 7).each { |x| gpio.set_data(x, 1) if recvdata[x] = 0x01 }
  end
  i += 1
  i = 0 if i > 100
  mssleep 1
end
```
Why main loop was written in C (2)

```ruby
> GC.start
  => nil
> p ObjectSpace.count_objects; 1000000.times { a = "a" }; ObjectSpace.count_objects
  {:TOTAL=>2048, :FREE=>1083, :T_OBJECT=>3, :T_CLASS=>45, :T_MODULE=>7,
  :T_ICLASS=>11, :T_SCLASS=>50, :T_PROC=>694, :T_ARRAY=>47, :T_HASH=>2,
  :T_STRING=>89, :T_EXCEPTION=>1, :T_ENV=>15, :T_DATA=>1}
  => {:TOTAL=>2048, :FREE=>1120, :T_OBJECT=>3, :T_CLASS=>45, :T_MODULE=>7,
  :T_ICLASS=>11, :T_SCLASS=>50, :T_PROC=>691, :T_ARRAY=>1, :T_HASH=>1,
  :T_STRING=>103, :T_EXCEPTION=>1, :T_ENV=>14, :T_DATA=>1}
> GC.disable
  => false
> p ObjectSpace.count_objects; 1000000.times { a = "a" }; ObjectSpace.count_objects
  {:TOTAL=>2048, :FREE=>859, :T_OBJECT=>3, :T_CLASS=>45, :T_MODULE=>7,
  :T_ICLASS=>11, :T_SCLASS=>50, :T_PROC=>698, :T_ARRAY=>94, :T_HASH=>2,
  :T_STRING=>259, :T_EXCEPTION=>1, :T_ENV=>18, :T_DATA=>1}
  => {:TOTAL=>1001472, :FREE=>153, :T_OBJECT=>3, :T_CLASS=>45, :T_MODULE=>7,
  :T_ICLASS=>11, :T_SCLASS=>50, :T_PROC=>701, :T_ARRAY=>141, :T_HASH=>3,
  :T_STRING=>1000336, :T_EXCEPTION=>3, :T_ENV=>20, :T_DATA=>1}
```
Why main loop was written in C (3)

Do you know where the problem is occurred? It is range.

The received data from serial is 8 bytes, if keeping receiving, range object is generated every 1ms.

main.rb (excerpt):

```ruby
i = 0
loop do
  sensor = gpio.get_data if i % 100 == 0
  recvdata = serial.get_data
  if recvdata
    (0 .. 7).each { |x| gpio.set_data(x, 1) if recvdata[x] = 0x01 }
  end
  i += 1
  i = 0 if i > 100
  mssleep 1
end
```
Why main loop was written in C (4)

> p Time.now; \textbf{1000000}.times \{ a = "a" \}; Time.now
Fri Oct 30 19:09:24 2015 1sec
=> Fri Oct 30 19:09:25 2015

> GC.enable
gc: true
=> true

> p Time.now; \textbf{1000000}.times \{ a = "a"; GC.start \}; Time.now
Fri Oct 30 19:10:05 2015 113sec
=> Fri Oct 30 19:11:58 2015

A micro controller picks up events by loop processing. If a literal string, array, hash, range etc. is used in the loop, RAM is consumed. Or GC occurs frequently, and processing becomes slow. So the main loop was written by C and a part equivalent to an event handler was written by mruby.
Mruby and C - Sensor

- **The advantage of mruby:**
 - Simple and plain code. (in particular, string, network communication, etc.)
 - Byte code separable.
- **The advantage of C:**
 - Hardware access. (and able to the power management)
 - Fixing resources.

- Let's make small mrbgem. (having common api for many devices)
- Making main loop with C, logic with mruby.

The same code can execute on other devices by changing small mrbgems. And the logic part will code and replace easily.
Countermeasures - Cloud

Cloud performance for bulk access...

Unfortunately, I didn't make for performance measurement.
We will report at the result report meeting of the OSS Promotion Forum in January 2016.
Addition

I developed sensor data generator for measurement of cloud performance.

There might be a person who uses it, so about 1 person for 1 million people, made it a gem and up to rubygems site.
What we will do in next year

- Now, the byte code is not separated. We will try to separate the byte code, and change the action of microcontroller without compiling.
- We will use MQTT for server, gateway and mobile, to reduce the protocol overhead and to be more simple their codes.
• Contact

OSS Promotion Forum Application sub committee

Web site: http://ossforum.jp/application_sub
Github: https://github.com/ossforumjp-app-IoT

CEC

Web site: http://www.cec-ltd.co.jp/

Tetsuya Hirota

Facebook: https://www.facebook.com/tetsuya.hirota
Github: https://github.com/constdrop
Thanks!